Publications & technical resources
Explore how DHO technology is facilitating scientific discovery
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Imaging and positioning through scattering media with double-helix point spread function engineering
Significance: Double-helix point spread function (DH-PSF) microscopy has been developed for three-dimensional (3D) localization and imaging at super-resolution but usually in environments with no or weak scattering. To date, super-resolution imaging through turbid media has not been reported. Aim: We aim to explore the potential of DH-PSF microscopy in the imaging and localization of targets in scattering environments for improved 3D localization accuracy and imaging quality. Approach: The conventional DH-PSF method was modified to accommodate the scanning strategy combined with a deconvolution algorithm. The localization of a fluorescent microsphere is determined by the center of the corresponding double spot, and the image is reconstructed from the scanned data by deconvoluting the DH-PSF. Results: The resolution, i.e., the localization accuracy, was calibrated to 13 nm in the transverse plane and 51 nm in the axial direction. Penetration thickness could reach an optical thickness (OT) of 5. Proof-of-concept imaging and the 3D localization of fluorescent microspheres through an eggshell membrane and an inner epidermal membrane of an onion are presented to demonstrate the super-resolution and optical sectioning capabilities. Conclusions: Modified DH-PSF microscopy can image and localize targets buried in scattering media using super-resolution. Combining fluorescent dyes, nanoparticles, and quantum dots, among other fluorescent probes, the proposed method may provide a simple solution for visualizing deeper and clearer in/through scattering media, making in situ super-resolution
microscopy possible for various demanding applications.
3D super-resolution fluorescence imaging of microgels
Super-resolution fluorescence microscopy techniques are powerful tools to investigate polymer systems. In this review, we address how these techniques have been applied to hydrogel nano- and microparticles, so-called nano- or microgels. We outline which research questions on microgels could be ad- dressed and what new insights could be achieved. Studies of the morphology, shape, and deformation of microgels; their internal compartmentalization; the cross-linker distribution and polarity inside them; and their dynamics and diffusion are summarized. In particular, the abilities to super-resolve structures in three dimensions have boosted the research field and have also allowed researchers to obtain impressive 3D images of deformed microgels. Accessing information beyond 3D localization, such as spectral and lifetime properties and correlative imaging or the combination of data with other methods, shines new light onto polymer systems and helps us understand their complexity in detail. Such future trends and developments are also addressed.
A hierarchical pathway for assembly of the distal appendages that organize primary cilia
Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, C3ORF14) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assay revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.
All-optical inter-layers functional connectivity investigation in the mouse retina
We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the ‘‘cellular receptive field’’ describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.
Single-molecule microscopy methods to study mitochondrial processes
Mitochondria are essential organelles of eukaryotic cells with key functions in metabolism, apoptosis, and signaling. As a result, impaired mitochondrial function has been associated with numerous diseases. In order to understand mitochondrial processes, it is fundamental to gain knowledge about their structure and microcompartmentalization, including the function, organization, and dynamics of their protein, nucleic acid, and lipid components. A number of recent groundbreaking advances in fluorescence microscopy enable the study of mitochondrial biology with unprecedented detail. Among them, new methods based on single-molecule and super-resolution microscopy allow us to study mitochondrial structures, protein organizations, and dynamics. Here, we discuss the advantages and disadvantages of different single-molecule microscopy methods to study individual proteins in fixed and living cells in the background of mitochondrial processes, in situ.
Super-resolution cryogenic correlative light and electron microscopy reveals protein organization in the context of intact cellular ultrastructure
To understand how cells work, we need elucidate how proteins
interact inside cellular ultrastructure. Super-resolution
microscopy, e.g. stochastic optical reconstruction microscopy
(STORM) [1], underpins our understanding of interacting
molecular networks in cells at the resolution of dozens of
nanometres. However, to ascertain protein structure and function
relationship, cryogenic correlative light and electron microscopy
(cryo-CLEM) [2] is highly sought after because it combines the
functional information from molecular tagging in light
microscopy with the intact ultrastructure information in electron
microscopy. The challenge is the discrepancy in resolving power
and imaging volume between cryo-EM and conventional cryoFM. To address this challenge, we developed cryogenic STORM
(cryo-STORM) to achieve sub-10 nm localization precision [3],
and 3D Double Helix STORM with extended imaging volume to
a few microns in a single shot. We are developing superresolution cryo-CLEM workflow, aiming at unravelling the
structure-function relationship of proteins and their partners
throughout the cells with unprecedented precision.
resPAINT: accelerating volumetric super-resolution localisation microscopy by active control of probe emission
A new super-resolution technique for localisation microscopy, which combines active control of probe photophysics with stochastic binding is reported. resPAINT yields an up to 50-fold improvement in localisation rate vs. PAINT without compromising contrast and is fully compatible with large depth of field imaging techniques. This opens the door to larger scale 3D localisation microscopy as imaging that normally takes days can now be completed in hours.
Fast and parallel nanoscale three-dimensional tracking of heterogeneous mammalian chromatin dynamics
Chromatin organization and dynamics are critical for gene regulation. In this work we present a methodology for fast and parallel three-dimensional (3D) tracking of multiple chromosomal loci of choice over many thousands of frames on various timescales. We achieved this by developing and combining fluorogenic and replenishable nanobody arrays, engineered point spread functions, and light sheet illumination. The result is gentle live-cell 3D tracking with excellent spatiotemporal resolution throughout the mammalian cell nucleus. Correction for both sample drift and nuclear translation facilitated accurate long-term tracking of the chromatin dynamics. We demonstrate tracking both of fast dynamics (50 Hz) and over timescales extending to several hours, and we find both large heterogeneity between cells and apparent anisotropy in the dynamics in the axial direction. We further quantify the effect of inhibiting actin polymerization on the dynamics and find an overall increase in both the apparent diffusion coefficient D* and anomalous diffusion exponent α and a transition to more-isotropic dynamics in 3D after such treatment. We think that in the future our methodology will allow researchers to obtain a better fundamental understanding of chromatin dynamics and how it is altered during disease progression and after perturbations of cellular function.
Exploring cell surface-nanopillar interactions with 3D super-resolution microscopy
Plasma membrane topography has been shown to strongly influence the behavior of many cellular processes such as clathrin-mediated endocytosis, actin rearrangements, and others. Recent studies have used 3D nanostructures such as nanopillars to imprint well-defined membrane curvatures (the “nano-bio interface”). In these studies, proteins and their interactions were probed by 2D fluorescence microscopy. However, the low resolution and limited axial detail of such methods are not optimal to determine the relative spatial position and distribution of proteins along a 100 nm-diameter object, which is below the optical diffraction limit. Here, we introduce a general method to explore the nanoscale distribution of proteins at the nano-bio interface with 10-20 nm precision using 3D single-molecule super-resolution (SR) localization microscopy. This is achieved by combining a silicone oil immersion objective and 3D double-helix point-spread function microscopy. We carefully optimize the objective to minimize spherical aberrations between quartz nanopillars and the cell. To validate the 3D SR method, we imaged the 3D shape of surface-labeled nanopillars and compared the results with electron microscopy measurements. Turning to transmembrane-anchored labels in cells, the high quality 3D SR reconstructions reveal the membrane tightly wrapping around the nanopillars. Interestingly, the cytoplasmic protein AP-2 involved in clathrin-mediated endocytosis accumulates along the nanopillar above a specific threshold of 1/R membrane curvature. Finally, we observe that AP-2 and actin preferentially accumulate at positive Gaussian curvature near the pillar caps. Our results establish a general method to investigate the nanoscale distribution of proteins at the nano-bio interface using 3D SR microscopy.
No results found
Please try different keywords
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
No results found
Please try different keywords
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Visualizing the dynamic human genome with DHO 3D tracking and Light Sheet Microscopy
Visualizing the dynamic human genome with DHO 3D tracking and Light Sheet Microscopy
DHO-enabled 3D dSTORM unlocks insights into nanoscale structure of the brain
DHO-enabled 3D dSTORM unlocks insights into nanoscale structure of the brain
Imaging bacterial cell outer membranes in search of new antibiotics
Imaging bacterial cell outer membranes in search of new antibiotics
No results found
Please try different keywords