Publications & technical resources

Explore how DHO technology is facilitating scientific discovery

Showing
publications
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Education
Materials science
Image refocusing
Darkfield
Brightfield
Polarization imaging
Simultaneous multicolor
FISH & smFISH
Custom order
Tetrapod
Deep focus
Single helix
Double helix
Super resolution
Multiplexed imaging
High-throughput screening
High-content analysis
Inspection
Data visualization
Data analysis
Image reconstruction
Emitter localization
OEM integrations
Offline inspection
Online inspection
Spatial omics
Volumetric imaging
Nuclear biology
Drug discovery
Bacterial biology
FRET & smFRET
HILO
TIRF
Widefield
PAINT
PALM
STORM
Computer vision
Multicolor
Light sheet
Optical engineering
Immunotherapy
Chemical engineering
CLEM
Biophysics
3D particle tracking
Physical chemistry
Neuroscience
Proteomics
SPINDLE
Phase mask
Cell biology
Variable-angle illumination
3DTRAX
3D SMLM
Drug delivery
Two photon microscopy
Genomics
Environmental remediation
AI & ML
Jan 22, 2019
|
Biophysical Journal
Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, Ljiljana Milenkovic, Tim Stearns, and W. E. Moerner
Super-resolution (SR) microscopy has been used to observe structural details beyond the diffraction limit of ∼250 nm in a variety of biological and materials systems. By combining this imaging technique with both computer-vision algorithms and topological methods, we reveal and quantify the nanoscale morphology of the primary cilium, a tiny tubular cellular structure (∼2–6 μm long and 200–300 nm in diameter). The cilium in mammalian cells protrudes out of the plasma membrane and is important in many signaling processes related to cellular differentiation and disease. After tagging individual ciliary transmembrane proteins, specifically Smoothened, with single fluorescent labels in fixed cells, we use three-dimensional (3D) single-molecule SR microscopy to determine their positions with a precision of 10–25 nm. We gain a dense, pointillistic reconstruction of the surfaces of many cilia, revealing large heterogeneity in membrane shape. A Poisson surface reconstruction algorithm generates a fine surface mesh, allowing us to characterize the presence of deformations by quantifying the surface curvature. Upon impairment of intracellular cargo transport machinery by genetic knockout or small-molecule treatment of cells, our quantitative curvature analysis shows significant morphological differences not visible by conventional fluorescence microscopy techniques. Furthermore, using a complementary SR technique, two-color, two-dimensional stimulated emission depletion microscopy, we find that the cytoskeleton in the cilium, the axoneme, also exhibits abnormal morphology in the mutant cells, similar to our 3D results on the Smoothened-measured ciliary surface. Our work combines 3D SR microscopy and computational tools to quantitatively characterize morphological changes of the primary cilium under different treatments and uses stimulated emission depletion to discover correlated changes in the underlying structure. This approach can be useful for studying other biological or nanoscale structures of interest.
View publication
Aug 28, 2018
|
Optics Express
Siwei Li, Jingjing Wu, Heng Li, Danying Lin, Bin Yu, and Junle Qu
Refocusing after Scanning using Helical phase engineering (RESCH) microscopy has previously been demonstrated to provide volumetric information from a single 2D scan. However, the practical application of this method is challenging due to its limited image acquisition speed and spatial resolution. Here, we report on a combination of RESCH and multifocal structured illumination microscopy (MSIM) to improve the image acquisition speed and spatial resolution. A phase mask is introduced to modulate the conventional point spread function (PSF) to the double-helix PSF (DH-PSF), which provides volumetric information, and meanwhile, sparse multifocal illumination patterns are generated by a digital micromirror device (DMD) for parallel 3D subdiffractive imaging information acquisition. We also present a strategy for processing the collected raw data with a Richardson-Lucy deconvolution and pixel reassignment algorithm to improve the spatial resolution of the depth estimation and imaging performance. The proposed 3D image scanning microscopy can record 3D specimen information and the corresponding depth information from a single multi-spot 2D planar scan, which ensures faster data acquisition, larger field of view, and higher spatial resolution than RESCH. Finally, we demonstrate the capability of our system with actual experiments.
View publication

No results found

Please try different keywords

Showing
webinars
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Showing
notes
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Ready to learn more?