Publications & technical resources

Explore how DHO technology is facilitating scientific discovery

Showing
publications
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Education
Materials science
Image refocusing
Darkfield
Brightfield
Polarization imaging
Simultaneous multicolor
FISH & smFISH
Custom order
Tetrapod
Deep focus
Single helix
Double helix
Super resolution
Multiplexed imaging
High-throughput screening
High-content analysis
Inspection
Data visualization
Data analysis
Image reconstruction
Emitter localization
OEM integrations
Offline inspection
Online inspection
Spatial omics
Volumetric imaging
Nuclear biology
Drug discovery
Bacterial biology
FRET & smFRET
HILO
TIRF
Widefield
PAINT
PALM
STORM
Computer vision
Multicolor
Light sheet
Optical engineering
Immunotherapy
Chemical engineering
CLEM
Biophysics
3D particle tracking
Physical chemistry
Neuroscience
Proteomics
SPINDLE
Phase mask
Cell biology
Variable-angle illumination
3DTRAX
3D SMLM
Drug delivery
Two photon microscopy
Genomics
Environmental remediation
AI & ML
Jul 6, 2021
|
Proceedings of the National Academy of Sciences
Haichao Wu, Benjamin Greydanus, and Daniel K. Schwartz
Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.
View publication
Jun 3, 2021
|
Nature Reviews Methods Primers
Mickaël Lelek, Melina T. Gyparaki, Gerti Beliu, Florian Schueder, Juliette Griffié, Suliana Manley, Ralf Jungmann, Markus Sauer, Melike Lakadamyali, and Christophe Zimmer
Single-molecule localization microscopy (SMLM) describes a family of powerful imaging techniques that dramatically improve spatial resolution over standard, diffraction-limited microscopy techniques and can image biological structures at the molecular scale. In SMLM, individual fluorescent molecules are computationally localized from diffraction-limited image sequences and the localizations are used to generate a super-resolution image or a time course of super-resolution images, or to define molecular trajectories. In this Primer, we introduce the basic principles of SMLM techniques before describing the main experimental considerations when performing SMLM, including fluorescent labelling, sample preparation, hardware requirements and image acquisition in fixed and live cells. We then explain how low-resolution image sequences are computationally processed to reconstruct super-resolution images and/or extract quantitative information, and highlight a selection of biological discoveries enabled by SMLM and closely related methods. We discuss some of the main limitations and potential artefacts of SMLM, as well as ways to alleviate them. Finally, we present an outlook on advanced techniques and promising new developments in the fast-evolving field of SMLM. We hope that this Primer will be a useful reference for both newcomers and practitioners of SMLM.
View publication
Mar 19, 2020
|
Molecular Biology of the Cell
Henrietta W. Bennett, Anna-Karin Gustavsson, Camille A. Bayas, Petar N. Petrov, Nancie Mooney, W. E. Moerner, and Peter K. Jackson
Primary cilia in many cell types contain a periaxonemal subcompartment called the inversin compartment. Four proteins have been found to assemble within the inversin compartment: INVS, ANKS6, NEK8, and NPHP3. The function of the inversin compartment is unknown, but it appears to be critical for normal development, including left–right asymmetry and renal tissue homeostasis. Here we combine superresolution imaging of human RPE1 cells, a classic model for studying primary cilia in vitro, with a genetic dissection of the protein–protein binding relationships that organize compartment assembly to develop a new structural model. We observe that INVS is the core structural determinant of a compartment composed of novel fibril-like substructures, which we identify here by three-dimensional single-molecule superresolution imaging. We find that NEK8 and ANKS6 depend on INVS for localization to these fibrillar assemblies and that ANKS6-NEK8 density within the compartment is regulated by NEK8. Together, NEK8 and ANKS6 are required downstream of INVS to localize and concentrate NPHP3 within the compartment. In the absence of these upstream components, NPHP3 is redistributed within cilia. These results provide a more detailed structure for the inversin compartment and introduce a new example of a membraneless compartment organized by protein–protein interactions.
View publication
Feb 20, 2020
|
Journal of the American Chemical Society
Haichao Wu, Raphaël Sarfati, Dapeng Wang, and Daniel K. Schwartz
Translocation from one cavity to another through a narrow constriction (i.e., a “hole”) represents the fundamental elementary process underlying hindered mass transport of nanoparticles and macromolecules within many natural and synthetic porous materials, including intracellular environments. This process is complex and may be influenced by long-range (e.g., electrostatic) particle–wall interactions, transient adsorption/desorption, surface diffusion, and hydrodynamic effects. Here, we used a three-dimensional (3D) tracking method to explicitly visualize the process of nanoparticle diffusion within periodic porous nanostructures, where electrostatic interactions were mediated via ionic strength. The effects of electrostatic interactions on nanoparticle transport were surprisingly large. For example, an increase in the Debye length of only a few nanometers (in a material with a hole diameter of ∼100 nm) increased the mean cavity escape time 3-fold. A combination of computational and experimental analyses indicated that this hindered cavity escape was due to an electrostatic energy barrier in the region of the hole, which was quantitatively explained using DLVO theory. These findings explicitly demonstrate that the cavity escape process was barrier-limited and dominated by electrostatic effects.
View publication
Jan 20, 2020
|
Nature Microbiology
Keren Lasker, Lexy von Diezmann, Xiaofeng Zhou, Daniel G. Ahrens, Thomas H. Mann, W. E. Moerner, and Lucy Shapiro
Selective recruitment and concentration of signalling proteins within membraneless compartments is a ubiquitous mechanism for subcellular organization. The dynamic flow of molecules into and out of these compartments occurs on faster timescales than for membrane-enclosed organelles, presenting a possible mechanism to control spatial patterning within cells. Here, we combine single-molecule tracking and super-resolution microscopy, light-induced subcellular localization, reaction-diffusion modelling and a spatially resolved promoter activation assay to study signal exchange in and out of the 200 nm cytoplasmic pole-organizing protein popZ (PopZ) microdomain at the cell pole of the asymmetrically dividing bacterium Caulobacter crescentus. Two phospho-signalling proteins, the transmembrane histidine kinase CckA and the cytoplasmic phosphotransferase ChpT, provide the only phosphate source for the cell fate-determining transcription factor CtrA. We find that all three proteins exhibit restricted rates of entry into and escape from the microdomain as well as enhanced phospho-signalling within, leading to a submicron gradient of activated CtrA-P that is stable and sublinear. Entry into the microdomain is selective for cytosolic proteins and requires a binding pathway to PopZ. Our work demonstrates how nanoscale protein assemblies can modulate signal propagation with fine spatial resolution, and that in Caulobacter, this modulation serves to reinforce asymmetry and differential cell fate of the two daughter cells. and differential cell fate of the two daughter cells.
View publication

No results found

Please try different keywords

Showing
webinars
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Showing
notes
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

No results found

Please try different keywords

Ready to learn more?